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 MARJORIE RICE was an unlikely candidate for the role of mathematical innovator. A 
San Diego housewife and mother of five, she had no formal education in mathematics save a 
single course required for graduation from high school in 1939. Nonetheless, in 1975, she 
took up a problem that professional mathematicians had twice left for dead, and showed how 
much life was in it still. 
 The problem was tessellation, or tiling of the plane, which involves taking a single 
closed figure—a triangle, say, or a rectangle—and fitting it together with copies of itself so 
that a plane is covered without any gaps or overlap. A region of this plane would look rather 
like a jigsaw puzzle whose pieces are all identical. M. C. Escher, the Dutch artist, who, like 
Rice, acquired mathematical insight without formal training, was a master at tessellation, as 
any number of his pictures show. But the tessellations in most of those pictures involved 
curves. Rice worked primarily with polygons, which consist only of straight lines. More 
specifically, she worked with convex polygons, in which the line joining any two points on 
the polygon lies entirely within the polygon itself or on one of its edges. (A five-pointed star, 
for example, does not qualify as a convex polygon.) 
 By the time Rice took up tiling, its basic properties had been established. Obviously, 
any square can tile the plane, as many kitchen floors have demonstrated. Equilateral triangles 
are also a fairly clear-cut case. And there is one other regular polygon (a polygon whose 
angles, and sides, are equal) that can tile the plane: the hexagon. This fact was established by 
the ancient Greeks but had long before been exploited by honeybees in building their 
honeycombs. 
 And what of irregular polygons? As it turns out, any triangle or quadrilateral, no 
matter how devoid of regularity, will tile the plane. Yet no convex polygon with more than 
six sides can do so, and the three classes of convex hexagons that can were uncovered by the 
end of the First World War. So the only real question left by the time Marjorie Rice happened 
on the scene was, Which convex pentagons tile the plane? 
 The question had been taken up by Karl Reinhardt, a graduate student at the 
University of Frankfurt, in 1918. In his doctoral dissertation (which also settled the hexagon 
question once and for all), Reinhardt defined five classes of convex pentagons that tile the 
plane. For example, consider a pentagon whose angles are labeled A through E and whose 
sides are labeled a through e, in which each side is opposite the angle that shares its letter. 
Reinhardt showed that any pentagon in which C+E=180 degrees and a=c can tile a plane. He 
did not claim that this and his four other classes of convex pentagons were the only such 
classes to be found, but he intimated as much, and this became the received wisdom; the 
problem of tiling the plane with convex polygons was closed. 
 Fifty years later, the problem was reopened and then closed again. In 1968, Richard 
B. Kershner, writing in The American Mathematical Monthly, claimed to have solved it once 
and for all. Kershner had found three classes of convex pentagons that could tile the plane but 
had been overlooked by all his predecessors. He confidently asserted that these three 
pentagons, together with Reinhardt's original five, constituted the final list of convex 
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pentagons that tile the plane. Pleading space limitations, he did not publish a proof of the 
assertion. 
 As it turned out, space was not the only obstacle to such a proof; Kershner was wrong. 
In 1975, Martin Gardner wrote two of his “Mathematical Games” columns in Scientific 
American on tiling of the plane, thus prompting scores of trained and amateur mathematicians 
to try their hands at tessellation. Marjorie Rice was not the first to succeed, but she was by far 
the most prolific. Rice furtively read her son's Scientific American upon its arrival every 
month, and Gardner's December column, which reported on the progress of amateur 
tessellators, stirred her to action. “This was the busy Christmas season which took much of 
my time,” she later recalled, “but I got back to the problem whenever I could and began 
drawing little diagrams on my kitchen counter when no one was there, covering them up 
quickly if someone came by, for I didn't wish to have to explain what I was doing to anyone.” 
 Before long, Rice was drawing pentagons and fitting them together mentally. She 
soon found an undiscovered pentagon that fit snugly with copies of itself and proved to her 
own satisfaction that the fit must indeed be perfect for the entire class of pentagons to which 
it belonged. She then informed Gardner of her discovery, observing in her letter that “one of 
the enclosed examples in which the two sizes of line are in golden proportion makes a very 
pleasing arrangement, I think.” Gardner put her in touch with Doris Schattschneider, a 
mathematician with a professional interest in the harmony of mathematics and art. With 
Schattschneider's encouragement, Rice has since discovered several more kinds of pentagons 
that tile the plane, bringing to thirteen the number of such classes known. (The findings were 
reported in a 1978 article in Mathematics Magazine, written by Schattschneider; Rice herself 
has never published a word on the subject.) 
 The cover of the November 1985 issue of Mathematics Magazine featured an 
arresting illustration—a previously unknown tessellation of convex pentagons. Rolf Stein, of 
the University of Dortmund, in West Germany, had found a fourteenth class of pentagons. 
Unchastened by the experience of Reinhardt and Kershner, Stein has claimed that the 
problem is solved once and for all. This remains an unproven assertion; Marjorie Rice's final 
contribution to mathematics may be yet to come. 
 TODAY tiling the plane—or, at least, trying to—is fast becoming a minor 
mathematical industry. It has attracted a substantial following, especially among amateurs. Its 
minstrels are much in demand, servicing conferences, colloquiums, and the always hungry 
recreational-mathematics press. It is hard to believe, amid all the activity, that no progress 
was made in the subject during the fifty years between Reinhardt's doctoral dissertation and 
Kershner's discovery of three new convex pentagons. That hiatus, indeed, demands 
explanation. After all, since 1918 there had been much activity in all the sciences, including 
mathematics. And no technological or theoretical breakthrough was missing; tiling the plane 
was not a problem that required, say, high-speed computers for its solution. What, then, 
accounts for the period of stagnation? What did Marjorie Rice have that scores of past 
mathematicians did not have? 
 In a word, pictures. During most of this century, mathematicians have frowned upon 
the use of diagrams in exposition and argument. Even with a problem so unavoidably visual 
as tiling of the plane, proofs of solutions, preferably, would not invoke diagrams but would 
consist merely of rows of symbols: numerals; English, Greek, and Hebrew letters; compound 
characters made by stacking up bars and dots and tildes—enough symbols, all told, to give a 
typographer nightmares. And each row would follow from the previous row in accordance 
with the laws of mathematical deduction. As long as this deductivist orthodoxy held sway, 



PICTURE PUZZLING by IVAN RIVAL, THE SCIENCES, JANUARY/FEBRUARY 1987   3 
there was little room in mathematical discourse for diagrams or for arguments that appealed 
to common sense or intuition. 
 Yet tiling problems call for, above all, thinking and talking in terms of images. 
Though it is not difficult to mount an entirely formal argument in support of the fairly simple 
cases analyzed by Reinhardt, the logic behind the more complex cases explored by Rice is 
difficult to convey without using pictures. In fact, as an aid to reasoning, she developed a 
symbolism all her own, a synthesis of pictures resembling hieroglyphics and an arcane code. 
 Rice's methodology, as it happens, mirrors a shift in the way mathematics is being 
done. Even as she was so vividly demonstrating the advantages of pictorial reasoning and 
argument, professional mathematicians were rediscovering them. This renaissance in the use 
of diagrams is seen throughout the mushrooming field known as combinatorics—not just in 
such inherently visual problems as tiling but even in problems that have no obvious connec-
tion to geometry. Row upon row of symbols is no longer the only permitted form of 
professional discourse. Appeals to intuition, extrapolation from one or more examples, and 
the use of pictures—lots of pictures—are being reinstated in the language of mathematical 
argument. In one branch of mathematics, at least, the tyranny of deductivism has begun to 
erode. 
 DIAGRAMS ARE, of course, as old as mathematics itself. Geometry has always relied 
heavily on pictures, and, for a time, other branches of mathematics did, too. Even Isaac 
Newton, commonly credited with the invention of the calculus, did not actually prove its 

fundamental theorems—at least, not in accordance with today's stringent standards of formal 
proof. In discerning the properties of classes of algebraic functions (relationships that define 
one variable in terms of one or more other variables, such as y=x2+1), he would, we presume, 
select an example, contemplate its graph, draw generalizations, and test them with further 
experimentation. Thus, the rules he created for determining the slope of a function's graph, 
while useful, did not rest on a formal foundation. Had you asked him to justify them, he 
would likely have presented an argument that, though compelling, was loose and depended 
heavily on pictures. 

The intuitive and often persuasive style of argument used by Newton and his 
contemporaries fell into disrepute during the nineteenth century, after it proved, in several 
celebrated cases, misleading. One case involved Newton's own calculus—specifically, the 
relationship between continuous and differentiable functions. Loosely speaking, a continuous 
function is one whose graph has no breaks, or jumps. Thus, one could draw the curve 
representing the function on the coordinate axes without lifting pencil from paper. A 
differentiable function is, in essence, a function whose curve is smooth—with no corners or 
peaks. Though there are many continuous functions that are not everywhere differentiable, it 
had been thought virtually certain that every continuous function has at least one 
neighborhood—even if only a very small one—in which it is differentiable. In other words, it 
was thought that a continuous function cannot have a corner at every point along its graph. 
The intuitive basis for this belief was simple: it is impossible to conceive of a graph that is 
everywhere so densely folded and precipitous. 

It was thus a stunning revelation when, in 1872, the German mathematician Karl 
Weierstrass unveiled an example of a continuous function that was differentiable at no point 
at all. However improbable this idea seemed, Weierstrass had proved it rigorously, with an 
analysis couched strictly in algebraic symbolism. He drew no pictures of such a graph (how 
could he?), but the logic establishing its existence was airtight. 

The same point had already been made by Bernhard Bolzano, a Czech theologian, but 
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had fallen on deaf ears. In 1834, Bolzano discovered a continuous but nowhere differentiable 
function. And, in contrast to Weierstrass, he described his function not algebraically but with 
a sequence of pictures of ever more jagged graphs; if continued indefinitely, Bolzano argued, 
the sequence would yield the graph of a continuous but nowhere differentiable function. 

Would the reputation of pictorial reasoning have been less tarnished had Bolzano's 
work become known more widely than Weierstrass's? We will never know. Weierstrass was 
a very powerful figure in the mathematics community, and it was his form of the argument 
that prevailed. He also succeeded in formalizing some basic notions in calculus—among 
them that of the limit—and thereby systematized the fundamental ideas of the field that was 
to become modern analysis. (A limit, in the case of a simple single-variable continuous 
function, is a value for which there is a floor or a ceiling on the vertical axis beyond which 
the function's value will not venture so long as the value of x remains within a specified 
range.) Today, the standard textbook description of Weierstrass is as the man who “brought 
rigor to analysis” and made mathematicians doubt the reliability of their mental pictures and 
their geometric intuition. 

Meanwhile, pictorial reasoning had been called into question in geometry itself. The 
doubt grew around Euclid's fifth postulate—which had always been a bit suspect anyway, 
lacking, as it did, the simplicity of the preceding four. (The first four postulates are that two 
points determine a line; that a line can extend indefinitely; that a circle is determined by its 
center and a point on it; and that all right angles are equal.) The fifth postulate says that if two 
lines in a plane are intersected by a third line, and the two interior angles (the angles facing 
each other) on one side of the third line add up to less than 180 degrees, then the two lines 
will eventually intersect somewhere on that side of the third line. Anyone who thinks about 
this for a moment will be convinced of its truth—as, indeed, people had been for centuries. 
For two thousand years, no one had succeeded in proving it rigorously, but a simple sketch 
was sufficient to convince the skeptical. The fifth postulate was thought to be a purely logical 
consequence of Euclid's other postulates. 

In the 1820s, a Hungarian, János Bolyai, and a Russian, Nikolai Lobachevsky, 
independently described geometries based on the assumption that, although the first four of 
Euclid's postulates are true, the fifth is false. And it was later verified that these alternative, 
non-Euclidean geometries, though difficult to conceive, are as internally consistent as 
Euclidean geometry. These non-Euclidean geometries turned out not to be mere intellectual 
playthings. They are well suited to describing the properties of curved space, and Einstein 
showed them to be central to the mathematics of relativistic physics. 
 THESE AND OTHER EPISODES of disorienting mathematical discovery instigated what 
might be called a crisis in intuition. A time-honored approach to mathematical argument—
using examples and counter-examples, appealing to intuition and common sense, invoking 
mental pictures—suddenly seemed filled with pitfalls. Apparently, if mathematics were ever 
to truly possess the certainty with which it is commonly associated, all arguments would have 
to be cast as rigorous proofs: long chains of mathematical symbols, with each link following 
logically from the one before, would have to replace more tenuously connected sequences of 
diagrams and examples. Of course, these proofs might be so tedious and so densely encrypted 
that the overarching logic behind them would be lost entirely. But no matter; so long as each 
step in the proof accorded with the rules of logic—so long, that is, as each incremental 
deduction were sound—the conclusion would deserve confidence. And such confidence was 
a central goal of mathematics. 

This deductivist orthodoxy found voice in David Hilbert, the preeminent German 
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mathematician of the twentieth century. In 1900, at the International Congress of 
Mathematics, in Paris (where Hilbert introduced his famous list of twenty-three great 
unsolved problems), he exhorted his colleagues: “We hear within us the perpetual call: There 
is the problem. Seek its solution. You can find it by pure reason.” 

There is obvious merit in Hilbert's position. Rigorously deductive reasoning has 
played an important, indeed, central role in the considerable development of mathematics 
during the past one hundred and fifty years. The fundamental tenet of the mathematical creed 
is rightly deemed by mathematician and nonmathematician alike to lie in the field's alliance 
with the deductive spirit. Yet, for a creed to be useful, it must tell not only the truth but the 
whole truth, and the deductivist orthodoxy fails to acknowledge the whole of mathematics. 

There is more to mathematical discovery than the sort of tediously deductive 
reasoning employed in formal proofs. There are intuition, common sense, and inductive 
reasoning—reasoning by experimentation with examples on the uncertain but useful 
assumption that they are typical, in important respects, of an entire class. These routes to the 
discovery of a new theorem are often not represented in the series of symbolic strings that 
eventually serve as the theorem's official rationale. The nature of mathematical thinking is 
better captured by the words of Robert Musil, the early-twentieth century Austrian writer and 
philosopher, than by formal proofs. In his novel The Man Without Qualities, he compared 
mathematical discovery to “what happens when a dog carrying a stick in its mouth tries to get 
through a narrow door: it will go on turning its head left and right until the stick slips 
through.” Sometimes, he added, “the slipping through comes as a surprise, is something that 
just suddenly happens.” Proofs that fail to capture the thought processes behind them often 
fail as instruments of communication and, so, are useless in conveying true understanding. 

The deductivist orthodoxy is also misleading in its promise of certainty. Mathematics 
is presented as an inexorable progression of logical deductions that together constitute a 
monument of eternal and immutable truth. Once coded in the formal language of deductive 
reasoning, an assertion is thought to be beyond doubt. But, in fact, formal deductions are 
sometimes so long that the tedium of writing or of reading them dulls the mind, and crucial 
flaws are overlooked. More than once, a “proof” long thought unshakable has crumbled 
under overdue scrutiny. One example is the four-color theorem, which holds, in essence, that 
any conceivable two-dimensional map of different nations could be colored with only four 
colors in such a way that no two adjacent nations would have the same color. A number of 
widely accepted proofs of this theorem have turned out to be flawed. Alfred Bray Kempe, a 
nineteenth-century London barrister, succeeded in getting admitted into the Royal Society 
partly on the strength of his supposed proof of the theorem. Only later was his error detected. 
(The theorem is itself still considered true, thanks in part to high-speed computers that have 
examined it on a case-by-case basis.) 

Given this fallibility of even formal proofs, perhaps a revision of the notion of proof is 
in order. A proof, in the end, is an argument that succeeds in convincing one's peers; thus, a 
proof becomes one only by attaining social acceptance and remains one only by maintaining 
it. In this sense, the less formal arguments, invoking diagrams and appealing directly to 
intuition, are sometimes the most successful proofs. 
 THE LIMITS OF DEDUCTIVISM are at last dawning on mathematicians, thanks largely 
to computers. Among the core fields of theoretical computer science is combinatorics, whose 
problems typically involve considering various combinations and finding one that meets 
certain stated goals. Playing with a Rubik's Cube—twisting it this way and that in an attempt 
to restore each side to a single color—is an exercise in combinatorics; an astronomical 



PICTURE PUZZLING by IVAN RIVAL, THE SCIENCES, JANUARY/FEBRUARY 1987   6 
number of combinations of twists is possible, but only a select few will realize the goal. 
Another familiar problem in combinatorics is the traveling salesman problem, in which a 
salesman is to visit a large number of cities and wants to find the shortest route encompassing 
them. Combinatorics comes into play in computer science in, for example, the design of 
microchips whose tiny conduits are arranged to move electrons with optimal efficiency. 

These kinds of problems tend to be amenable to pictorial reasoning, which is not 
especially surprising, since they are by their very nature visual. But not all combinatorial 
problems are. Scheduling offers one example. Consider the decision facing the manager of an 
automobile assembly plant: the tasks involved in building a car can be performed in many 
different orders, and the amount of time consumed depends on the order chosen. Because of 
the number of parts in an automobile, solving this managerial quandary amounts to a problem 
in advanced mathematics. Similar scheduling problems arise in nearly all realms of human 
activity: preparing a multicourse dinner can be a complex matter, and space missions call for 
the coordination of thousands of people and their tasks. 

Problems such as these, though not superficially visual in nature, are also best solved 
with the help of pictures. The simplest example, perhaps, is the sorting out of hotel 
reservations so that none conflict. Typically, a chart is drawn—a time diagram, or Gantt 
chart, named after Henry Gantt, the management engineer who popularized it. Each row 
might represent a different room and each column a different day of the year. The resultant 
blocks are colored in as reservations are made. It does not take a mathematician to see that 
this visual depiction of the problem is more practical than a formal, symbolic rendering. But 
in more complex scheduling problems, too, fairly simple diagrams can be of service. Thus, in 
another sort of time diagram, each task is represented by an arrow, with the length of the 
arrow corresponding to the time consumed by the task; if the tip of arrow A touches the tail 
of arrow B, task A must be performed before task B. This sort of diagram could help in 
scheduling workers on an assembly line or technicians at Mission Control. 

In another realm of combinatorics, Gérard Viennot, a French mathematician, was 
inspired by children's Lego blocks (plastic blocks with interlocking tops and bottoms) to 
devise new methods of enumeration. Their applications are not confined to two or even three 
dimensions but involve equations whose graphic renderings are scarcely imaginable. 
Nonetheless, a physical model of a simpler case triggered the creation of an entire 
methodological structure. (The blocks he drew on paper are of much more widely varying 
sizes and shapes than Lego blocks, but they fit together just as snugly.) It may be a sign of the 
shifting winds in mathematics that the august Séminaire Bourbaki—a conservative group of 
elite mathematicians, based in Paris, that in the past has eschewed combinatorics and allied 
itself with formalism—invited Viennot to present his method three years ago. 

It is not just in their thinking that combinatorialists rely heavily on diagrams. In 
exposition, too, they have relaxed the deductivist imperatives enough to use pictures liberally. 
If any single article was a harbinger of this trend, it was one that appeared fifteen years ago in 
the prestigious Journal of Combinatorial Theory, written by Jean Mayer. The article was only 
one page long and, apart from its title, had essentially no exposition—not, at least, in the 
ordinary sense—but only pictures: three diagrams, appropriately labeled. The more 
conventional, written exposition would have required many pages and would have made for 
dull reading. The pictures told all. 

Combinatorics has brought, in addition to pictures, a pragmatic cast of thought that is 
new to mathematics. Until recently, even problems as concrete as scheduling had been treated 
as highly theoretical. Thus, a mathematician would be content to prove that he could, in 
principle, solve a complex problem; given time, he could enumerate all possible schedules, 
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compare them, and pick the best. Increasingly, combinatorialists will not settle for such 
theoretical solutions. They want to actually find the optimal schedule—or, failing that, find a 
schedule that is assuredly close to the optimal. Thus, one task of combinatorialists is to 
formulate computer algorithms that will identify, within a reasonable amount of time, a 
schedule that, for practical purposes, is as good as optimal. This pragmatic emphasis in 
combinatorics is seen in its freer mode of exposition and argument and in its heavy reliance 
on pictures. 
 THERE WAS A TIME, not so long ago, when combinatorialists were the second-class 
citizens of mathematics. Their work, standing on its own, with little reliance on the hallowed 
theorems of the past, did not qualify as “real” mathematics. Worse still, their inspiration did 
not come from an ideal, Platonic realm, where abstract truth is the supreme value, but from a 
messier place—the real world; combinatorics had evolved as a means for solving recreational 
puzzles and problems of technology and organization in the workplace. That combinatorics 
research so often had immediate payoffs—in the design of efficient computer hardware or 
software, for example—only lowered it in the esteem of traditional mathematicians. In large 
part, this was because of the perverse pleasure that mathematicians have long taken in the 
irrelevance of their work. In A Mathematician’s Apology, Godfrey Harold Hardy, the great 
British mathematician of the early twentieth century, wrote with pride that mathematics 
rarely has any practical application upon its creation; in this detachment from the real world 
lies its purity, its beauty. For most of this century, Hardy's sense of aesthetics has prevailed, 
and thus did combinatorics encounter resistance for much of its early life. 

But, today, combinatorics has risen from its lowly origins. Though it grows out of 
practical questions, its theorems often have a compelling interest for mathematicians. And, 
because of its practical value, combinatorics is attracting a growing fraction of mathematics 
students. Even old and prestigious journals now publish articles on combinatorics, and there 
has been an explosion of new journals devoted to the subject. They are rife with pictures and 
with crisp, intuitively accessible arguments. 

Is it possible that some of these pictures will eventually find such frequent use as to 
become standard symbolic terms? It would not be the first time. In geometry, for example, 
the signs for angle, parallel, and perpendicular derive from illustrations of the concepts they 
represent. The equal-sign depicts a more abstract mathematical relationship, but even it has a 
diagrammatic origin: at one time it stood for two lines of equal length. (It was first used, as 
far as we know, by the Welshman Robert Recorde, in 1557; there were then in circulation 
several competing symbols for equality, but once Recorde's entry was adopted by Newton 
and Gottfried Wilhelm Leibniz, who had independently invented the calculus, rival signs did 
not stand a chance.) Perhaps, one day, the lines of text in mathematics journals will be 
studded with diagrams that jut slightly above the tops of adjacent letters and numerals but 
that more than compensate in logical power and intuitive appeal for the space they consume. 
 
__________ 
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